Q 1. If n ∈ N, then 72n + 23n – 3. 3n – 1 is always divisible by
A. 25
B. 35
C. 45
D. None of these
Show Answer
Answer:-A. 25Q 2. If p is a prime number, then np – n is divisible by p when n is a
A. Odd number
B. Irrational number
C. Complex number
D. Natural number greater than 1
Show Answer
Answer:-D. Natural number greater than 1Q 3. For every natural number n, n(n + 1) is always
A. Odd
B. Even
C. Multiple of 3
D. Multiple of 4
Show Answer
Answer:-B. EvenQ 4. If n ∈ N, then 11n + 2 + 122n + 1 is divisible by
A. 113
B. 123
C. 133
D. None of these
Show Answer
Answer:-C. 133Q 5. For every natural number n, n(n2 – 1) is divisible by
A. 4
B. 6
C. 10
D. None of these
Show Answer
Answer:-B. 6Q 6. The statement P(n) “1 x 1! + 2 x 2! + 3 x 3! + … + n x n! = (n + 1)! – 1” is
A. True for all n > 1
B. True for all n ∈ N
C. Not true for any n
D. None of these
Show Answer
Answer:-B. True for all n ∈ NQ 7. For every natural number n
A. n > 2n
B. n < 2n
C. n = 2
D. n = 2n2
Show Answer
Answer:-B. n < 2nQ 8. The remainder when 599 is divided by 13 is
A. 6
B. 8
C. 9
D. 10
Show Answer
Answer:-B. 8Q 9. For each n ∈ N, the correct statement is
A. 2n < n
B. n2 > 2n
C. 23n > 7n + 1
D. n4 < nn
Show Answer
Answer:-D. n4 < nnQ 10. 10n + 3(4n+2) + 5 is divisible by (n ∈ N)
A. 4
B. 7
C. 9
D. 17
Show Answer
Answer:-C. 9Q 11. For natural number n, (n!)2 > nn, if
A. n > 3
B. n ³ 3
C. n ³ 4
D. n > 4
Show Answer
Answer:-B. n ³ 3Q 12. For natural number n, 2n (n – 1)! < nn, if
A. n < 2
B. n > 2
C. n ³ 2
D. Never
Show Answer
Answer:-B. n > 2Q 13. For positive integer n, 10n – 2 > 81n, if
A. n > 5
B. n ³ 5
C. n < 5
D. n > 6
Show Answer
Answer:-B. n ³ 5Q 14. When 2301 is divided by 5, the least positive remainder is
A. 2
B. 4
C. 6
D. 8
Show Answer
Answer:-A. 2Q 15. For every positive integer n, 2n < n! when
A. n < 3
B. n ³ 4
C. n < 4
D. None of these
Show Answer
Answer:-A. n < 3Q 16. x(xn–1 – nan–1) + an(n–1) is divisible by (x – a)2 for
A. n > 1
B. n > 2
C. All n ∈ N
D. None of these
Show Answer
Answer:-C. All n ∈ NQ 17. For every positive integral value of n, 3n > n3 when
A. n > 2
B. n ³ 3
C. n ³ 4
D. n < 4
Show Answer
Answer:-C. n ³ 4Q 18. For all positive integral values of n, 32n – 2n + 1 is divisible by
A. 2
B. 4
C. 8
D. 12
Show Answer
Answer:-A. 2Q 19. If n ∈ N, then x2n – 1 + y2n – 1 is divisible by
A. x + y
B. x – y
C. x2 + y2
D. x2 + xy
Leave a Reply